The Molecular Structure of Acetylacetonato(cyclo-octa-2,4-dienyl)palladium

By Melvyn R. Churchill

(Mallinckrodt Labovatory, Department of Chemistry, Harvard University, Cambridge, Mass., U.S.A.)

Acetylacetonato (cyclo-octa- 2,4-dienyl) palladium, ${ }^{1} \quad \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Pd}(\mathrm{MeCO} \cdot \mathrm{CH} \cdot \mathrm{COMe})$, crystallizes in the triclinic space-group $\mathrm{P} \overrightarrow{\mathbf{l}}$ with $a=7.07$, $b=9.92, c=9.89 \AA, \alpha=94.8, \beta=86.8, \gamma=$ $109 \cdot 8^{\circ}, Z=2$. A three-dimensional X-ray structural analysis of the complex, using conventional Patterson and Fourier techniques and two cycles of full-matrix refinement of positional and anisotropic thermal parameters, has converged the
discrepancy index, R_{1}, to its present value of $7 \cdot 08 \%$ for 1758 independent visually-estimated reflexions. Estimated standard deviations are $\sim 0.02 \AA$ for $\mathrm{Pd}-\mathrm{O}$ and $\mathrm{Pd}-\mathrm{C}$, and $\sim 0.03 \AA$ for $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ vectors. The figure shows the essential geometry of a molecule viewed down " a "

The tendency for palladium to form π-allyl complexes rather than linking directly to a $1,3-$ diene has been well documented ${ }^{\mathbf{1 , 2}}$; the present

[^0]structural analysis indicates that π-allyl formation is also preferred when larger conjugated systems

are attached to a palladium atom. Only three atoms of the cyclo-octadienyl ligand are involved in the metal-ligand bonding. The π-allyl carbon atoms $\mathrm{C}-1, \mathrm{C}-2$, and $\mathrm{C}-3$ are distant $2 \cdot 11,2 \cdot 10$, and $2 \cdot 12 \AA$ from the metal, whereas the remaining two atoms of the conjugated dienyl system are 2.91 (C-4) and $3.93 \AA(\mathrm{C}-5)$ from the palladium. The angle at the vertex of the π-allyl group (C-1-C-2-$\mathrm{C}-3$) is $119 \cdot 0^{\circ}$. The plane of the π-allyl group makes a dihedral angle (ϕ) of $121 \cdot 4^{\circ}$ with the plane defined by the palladium and two oxygen atoms. Similar dihedral angles have been noted in π-allylpalladium chloride ${ }^{3}\left(\phi=111.5^{\circ}\right) \pi$-allylpalladium $\operatorname{acetate}^{4}\left(\phi_{1}=110, \phi_{2}=125^{\circ}\right)$ and in the endoand exo-isomers of l-ethoxytetraphenylcyclobutenylpalladium chloride ${ }^{5}$ ($\phi=95^{\circ}$ for each isomer).
(Received, November 22nd, 1965; Com. 728.)
${ }^{3}$ A. E. Smith, Acta Cryst., 1965, 18, 331.
${ }^{4}$ M. R. Churchill and R. Mason, Nature, 1964, 204, 777.
${ }^{5}$ L. F. Dahl and W. E. Oberhansli, Inorg. Chem., 1965, 4, 629.

[^0]: ${ }^{1}$ S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1964, 5002.
 ${ }^{2}$ S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1963, 4806.

