The Molecular Structure of Acetylacetonato(cyclo-octa-2,4-dienyl)palladium

By MELVYN R. CHURCHILL

(Mallinckrodt Laboratory, Department of Chemistry, Harvard University, Cambridge, Mass., U.S.A.)

ACETYLACETONATO (CYCLO-OCTA-2,4-DIENYL) PAL-LADIUM,¹ C₈H₁₁Pd(MeCO·CH·COMe), crystallizes in the triclinic space-group P1 with a = 7.07, b = 9.92, c = 9.89 Å, $\alpha = 94.8$, $\beta = 86.8$, $\gamma = 109.8^{\circ}$, Z = 2. A three-dimensional X-ray structural analysis of the complex, using conventional Patterson and Fourier techniques and two cycles of full-matrix refinement of positional and anisotropic thermal parameters, has converged the discrepancy index, R_1 , to its present value of 7.08% for 1758 independent visually-estimated reflexions. Estimated standard deviations are ~ 0.02 Å for Pd-O and Pd-C, and ~ 0.03 Å for C-O and C-C vectors. The figure shows the essential geometry of a molecule viewed down "a"

The tendency for palladium to form π -allyl complexes rather than linking directly to a 1,3-diene has been well documented^{1,2}; the present

¹ S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1964, 5002.

² S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1963, 4806.

structural analysis indicates that π -allyl formation is also preferred when larger conjugated systems

³ A. E. Smith, Acta Cryst., 1965, 18, 331.

⁴ M. R. Churchill and R. Mason, Nature, 1964, 204, 777.

⁵ L. F. Dahl and W. E. Oberhansli, Inorg. Chem., 1965, 4, 629.

CHEMICAL COMMUNICATIONS

are attached to a palladium atom. Only three atoms of the cyclo-octadienyl ligand are involved in the metal-ligand bonding. The π -allyl carbon atoms C-1, C-2, and C-3 are distant 2·11, 2·10, and 2·12 Å from the metal, whereas the remaining two atoms of the conjugated dienyl system are 2·91 (C-4) and 3·93 Å (C-5) from the palladium. The angle at the vertex of the π -allyl group (C-1-C-2-C-3) is 119·0°. The plane of the π -allyl group makes a dihedral angle (ϕ) of 121·4° with the plane defined by the palladium and two oxygen atoms. Similar dihedral angles have been noted in π -allylpalladium chloride³ ($\phi = 111\cdot5^{\circ}$) π -allylpalladium acetate⁴ ($\phi_1 = 110$, $\phi_2 = 125^{\circ}$) and in the *endo*and *exo*-isomers of 1-ethoxytetraphenylcyclobutenylpalladium chloride⁵ ($\phi = 95^{\circ}$ for each isomer).

(Received, November 22nd, 1965; Com. 728.)